Step of Proof: l_before_antisymmetry
11,40
postcript
pdf
Inference at
*
1
1
2
0
I
of proof for Lemma
l
before
antisymmetry
:
1.
T
: Type
2.
l
:
T
List
3.
x
:
T
4.
y
:
T
5. no_repeats(
T
;
l
)
6. [
x
;
y
]
l
7. [
y
;
x
]
l
[
x
;
y
;
x
]
l
latex
by PERMUTE{1:n, 2:n, 2:n, 3:n, 4:n, 5:n, 6:n, 7:n, 8:n}
latex
1
: .....wf..... NILNIL
1:
T
Type
2
: .....wf..... NILNIL
2:
[
x
]
(
T
List)
3
: .....wf..... NILNIL
3:
l
(
T
List)
4
: .....wf..... NILNIL
4:
y
T
5
: .....antecedent..... NILNIL
5:
no_repeats(
T
;
l
)
6
:
6:
[
x
] @ [
y
]
l
7
: .....antecedent..... NILNIL
7:
[
y
;
x
]
l
8
:
8:
8. [
x
] @ [
y
;
x
]
l
8:
[
x
;
y
;
x
]
l
.
Definitions
t
T
,
f
(
a
)
,
s
=
t
,
x
:
A
B
(
x
)
,
as
@
bs
,
[]
,
[
car
/
cdr
]
,
L1
L2
,
no_repeats(
T
;
l
)
,
type
List
,
Type
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
append
overlapping
sublists
origin